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DYNAMIC RESPONSE OF AN INSONIFIED SONAR WINDOW INTERACTING
WITH A TONPILZ TRANSDUCER ARRAY

1. INTRODUCTION

One very typical sonar design consists of a soft material that is in contact with an array of
Tonpilz transducers. This soft material is usually called a window (or sometimes a screen). The
window serves several purposes: it protects the transducers from water, impact, and debris; it

attenuates nonacoustic energy; it provides a safe covering to the sonar system when it is shipped
or handled; and it helps to minimize turbulence and hydrodynamic drag. Tonpilz transducers are

a reliable transducer design that has been refined for many years. Single resonant Tonpilz
transducers typically consist of a head and tail mass separated by piezoelectric stack that emits a
voltage when it is subjected to an applied force. Tonpilz transducers are a useful design because
they can operate in transmit (active) and receive (passive) mode. They are functional in

environments where higher target signal-to-noise ratio is needed than can be obtained from
passive sonar only.

Tonpilz transducers have been studied in literature for many years. Basic design guidelines
exist in textbooks.' General transducer modeling techniques have been previously developed.2

Finite element models of the transducers yield the mechanical behavior when it is in contact with
a heavy fluid field3 and in contact with air.4 Equivalent circuit models have been derived and

analyzed. 5' 6'7 Sonar window models have been previously studied. Insertion loss and echo
reduction measurements are common in the literature.8,9, 10 Theoretical analysis has been
developed based on thick plate theory. 9"'11,12 Structurally stiffening the window for hull

applications has also been investigated.13 References I through 7 are transducer modeling, and
references 8 through 13 are window modeling and testing. It is noted that there is no known

analytical model that couples the Tonpilz transducers to a fully elastic sonar window.

This report derives and evaluates an analytical model of a fully elastic sonar window in

contact with an array of Tonpilz transducers. The window is insonified by a planewave at
varying arrival angles and frequencies. This model is intended for broadband frequency analysis

of a sonar system when there is significant interaction between the window and the array of
transducers. The formulation of the problem begins with elasticity theory, that models the

motion in the window as a combination of dilatational and shear waves. From this theory,
expressions for plate displacements in the normal and tangential direction are obtained. The
displacements are then inserted into stress relationships and these equations are set equal to the

forces acting on the structure by the transducers and the pressure of the incoming acoustic wave.
The problem is then written as an algebraic system of equations, in matrix form, where the left-

hand terms represent the zero-order window dynamics and are equal to an infinite number of



right-hand terms that represent the forces acting on the structure. Rewriting this zero-order

dynamic term, by increasing and decreasing the index, results in an expression for the higher-

order modes interacting with the applied forces. The integer shift property is then applied to the

right-hand side of all of the terms, resulting in an infinite set of equations that model the wave

propagation coefficients of all the modes of the structure. This set of equations is truncated to a
finite number of terms, and solutions to the displacement fields are calculated. The transducer

output is written as a function of the displacement field at the bottom of the window, and this
term is calculated as a transfer function of voltage divided by applied pressure versus arrival

angle and frequency. A numerical example is included where the array beam pattern is

generated at several frequencies and the results are discussed.
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2. SYSTEM MODEL

The system model is that of a sonar window attached to an array of Tonpilz transducers, as

shown in figure 1. This mechanical problem is analytically modeled by assuming the sonar
window is a fully elastic plate and the Tonpilz transducers are discrete mass-spring-mass
systems, as shown in figure 2. The plate (or sonar window) has a thickness of h (m) and is
loaded on the top surface with a normal (pressure) forcing function. The transducers on the

bottom of the window are equally spaced at a distance of L (m) in the x-direction and each has a
head mass per unit length M, (kg/m), tail mass per unit length MT (kg/m), and stiffness per unit
length Ks (N/m 2). The model uses the following assumptions: (1) the forcing function acting on
the plate is a planewave at a definite wavenumber and frequency; (2) motion is normal and
tangential to the plate in one direction (two-dimensional system); (3) the plate has infinite spatial
extent in the x-direction; (4) the head mass has translational degrees of freedom in the x- and
z-directions; (5) the tail mass and the spring have translational degrees of freedom in the
z-direction; (6) the particle motion is linear; and (7) the fluid medium is lossless.

F lu id .. ..... ..........F~lU~d iiiiiiiiiii Iiii:incom ing ... ..:

L a yer .. .... .. .. .. .. ... .........iii~~iii~~iii:: A c o u stic ... ~ i i iiiii iii iii iiii iiii ii~~ .... ... !

Tonpilz Transducers

Figure 1. Sonar Window with Tonplz Transducers
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Figure 2. Model of Sonar Window with Tonpilz Transducers

The motion of the elastic plate is governed by the equation

9V 2u(x, y, z, z')+(2 + P)VV 0 u(x, y, z,t)=p a 2 (1) Z

where p is the density (kg/rn3), A and p are the complex Lame6 constants (N/rn 2), ( is time
(seconds), - denotes a vector dot product, and u(x~yz, t) is the three-dimensional Cartesian
coordinate displacement vector and is written as

Ux (X, Y, Zt) 1/ (X,t) Z

u(x,y, Z,t) = UY (x'y'z't)-=Vk(x'y, z't)±V x/ y~(X, Y, Z', (2)
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where 0 is a dilatational scalar potential, V is the gradient operator, x denotes a vector

crossproduct, and V is an equivoluminal vector potential. The formulation is now condensed

into a two-dimensional problem; thus, uy = 0 and a(.)/ ay 0 O. Expanding equation (2) and

breaking the displacement vector into its individual nonzero terms yields

u3/(x, z, t) ct'y (x, z, t)Ux('t -d(X,Z,t) C (3)
Ox ,dz

and

uO4zt) +x ,t I/ X ,tUz(XZ,t) - do(,Z t -VY X 't (4)

Equations (3) and (4) are next inserted into equation (1), which results in two decoupled wave
equations given by

c2tV2q (x, z't) - d2('')(5)dt2

and

c2V2 Vy (X, Z't) 02 /Y (x 'z't)6t2

where equation (5) corresponds to the dilatational component and equation (6) corresponds to the
shear component of the displacement field. Correspondingly, the constants Cd and cs are the
complex dilatational and shear wavespeeds (m/s), respectively, and are determined by

cd = A+2u (7)
P

and

CS = (8)

5



The equations of motion are formulated as a boundary value problem using four equations of

stress written in terms of the plates' displacements and corresponding forcing functions. The

plate is loaded by a normal (pressure) forcing function as shown in figure 2; thus, the normal

stress at z = b is written using a force balance between the pressure in the fluid and the plate as

rzz~x~bOt) (2+2.~u(x,'b,'t) dux (x,b, t)

=+" b-2 = pa(b,X,t), (9)

where Pa (x,t) is the pressure field in contact with the top of the plate (N/mi2). The tangential

stress on the top of the plate is modeled as a free boundary condition and is written as

OUx(xb,'t) +uz(Xbt)] 0. (10)r zX(X, b, t) = pI e7z " X =0.(0

The plate is loaded by the forces in the Tonpilz transducers' head masses acting on the bottom of

the plate, thus, the normal stress at z = a is

rzz (x, a , t) = (2A + 2 /-) uz (x, a , t) 
( 11)ux 

(x , a , t _ o

dz Ox I-t fz(a,t)8(x- nL),
n1=--o0

where f, (a, t) is the force per unit length that each Tonpilz transducer exerts on the plate in the

z-direction and &x-nL) is the Dirac delta function that distributes the transducer forces discretely

and periodically. Similarly, the tangential stress on the bottom of the plate is

,rz X (X ux (x,a,t) duz (x,a,t) no

Lx(+,a,t) = pt Oz OX ( f"(x(a,t)5(x-nL), (12)

where f, (a, t) is the force per unit length that each Tonpilz transducer exerts on the plate in the

x-direction.

The acoustic pressure in the fluid medium is governed by the two-dimensional wave

equation and is written in Cartesian coordinates as

d 2 Pa(X,Z,t) d2 Pa(XZ,t) Q 1 2 pa(X,Z,t)
+ 2 2 (13)

6



where Pa (x, z, t) is the pressure (N/m2 ) and Cf is the real valued compressional wavespeed in

the fluid (m/s). The interface between the fluid and solid surface at z = b satisfies the linear
momentum equation, which relates the acceleration of the plate surface to the spatial gradient of
the pressure field by

92Uz(x,b,t) _ p,,a(x,b,t) (14)Pf Ot 2 '5 (14

where pf is the density of the fluid (kg/M3).

The system output is a transfer function of transducer voltage divided by incident pressure,
commonly called receive voltage sensitivity (rvs). This is equal to

rvs(x, t) = 93 3 t fs (x,t), (15)

where g 33 is the material constant that relates the mechanical force to electrical output
(volts m/N), t is the thickness of each piezoelectric piece from the transducer stack, and f, (x, t)
is the force in the transducer, which, in the case of this model, is the force across the spring.

7 (8 blank)



3. TRANSFORMATION INTO THE WAVENUMBER-FREQUENCY DOMAIN

The problem is now transformed into the wavenumber-frequency domain (kW) by using the

functional form, where the field variables are equal to an unknown function in the z-direction
times an exponential function in the x-direction times an exponential function in time. The

function in the z-direction is also a function of wavenumber and frequency. The displacements
become

ux (x, z, t)= Ux (k, z, co)exp(ikx)exp(i tot) (16)

and

uz (x,z,t) =Uz(k,z,co)exp(ikx)exp(icot), (17)

and the pressure is written as

Pa (x, z, t) = P. (z, k, co) exp(ikx) exp(icot), (18)

where i = ,rT, k is the wavenumber with respect to the x-axis (rad/m) and Co is frequency

(rad/s).

Inserting equations (16) and (17) into equations (2) through (6) and solving the differential

equations gives the transformed displacement field in the x-direction as

Ux (k, z, co)= A(k, co)ik exp(i az) + B(k, co)ik exp(-iaz) +

- C(k, o)if exp(i/3z) + D(k, co)i/3 exp(-i/Jz) (19)

and the transformed displacement field in the z-direction as

U (k, z, o)= A(k, co)ia exp(iaz)-B(k, co)i a exp(-i a z) +

C(k, co)ik exp(iflz)+D(k, w)ik exp(-i/Jz), (20)

where A(k, co), B(k, co), C(k, co), and D(k, co) are unknown complex wave propagation coefficients
of the plate, a is the modified wavenumber (radlm) associated with the dilatational wave and is
expressed as

Vkd (21)

9



where kd is the dilatational wavenumber and is equal to CO / Cd ;f is the modified wavenumber

(rad/m) associated with the shear wave and is expressed as

2 k2l= jk2 -k , (22)

where k, is the shear wavenumber (rad/m) and is equal to w /c.s

Inserting equation (18) into (13) and solving the resulting ordinary differential equation yields
the transformed pressure field as

Pa (z, k, co) = M(k, w) exp(iyz) + P1 (o) exp(-iyz), (23)

where the first term on the right-hand side represents the outgoing reradiated pressure field

caused by the plate displacement and the second term represents the incoming applied incident

pressure field (the forcing function) acting on the structure. In equation (23), yis the modified
wavenumber (rad/m) associated with the fluid and is expressed as

y= (co/ cf) k jk k2  (24)

where y is purely real or imaginary, depending on the sign of the argument under the radical.

When the sign of the argument is positive, the analysis is in the acoustic cone; when the sign of

the argument is negative, the analysis is in the nonacoustic region. For acoustic sonar response,
the analysis is typically studied in the acoustic cone. The relationship between the arrival angle
of an acoustic wave and its wavenumber is

k = (co/cf )sin(O), (25)

where 0 is the arrival angle of an incoming acoustic wave (rad) with 0 corresponding to
broadside excitation.

The forces exerted by the Tonpilz transducers can be determined with a dynamical model

of a mass-spring-mass system. The force per unit length in the z-direction for each transducer is

10



f(a,t) = O4 MHMT -CO 2 Ks(MT + MH) Uz (k,a, co)exp(ikx)exp(icwt)
Ks _Lo 2 MT I

= F, (co)Uz (k, a, co) exp(ikx) exp(icot), (26)

and the force per unit length in the x-direction for each transducer is

fx (a, t) = -co2 MH Ux(k,a,wc)exp(ikx)exp(icot)

= Fx (w)Ux (k, a, co) exp(ikx) exp(i wt), (27)

as the transducer spring constant is zero in the horizontal direction. It is noted that if the

transducer is a double or triple resonant type, the expressions given in equations (26) and (27)

can be changed to reflect these dynamic effects.

Finally, the output of the transducer can also be transferred into wavenumber-frequency

space as

rvs(x, t) = R VS(k, ow) exp(ikx) exp(icot). (28)

Substituting the spring dynamics yields the receive voltage sensitivity in terms of the

displacement at the bottom of the sonar window as

Sc2M

RVS(k,co)=K _O 2 g 33 t (Ks /w)Uz(k,a, co), (29)
Ks -co MT)

where w is the width of the transducer head in the x-direction (m).

The four boundary value equations (equations (9) through (12)) are now rewritten in the

wavenumber-frequency domain using equations (16) through (27). They become

JUz~k'b 'c) e-Y Ux(k'ba'o) _,___f

T, A +2p) (k, bo)+A (kbco+ , Uz(kb, w) = -2P 1 (w') (30)

11



T(kbo=pdUx(k, b, co) + dUz(k,b, o)(31)

Tk, (+)U•(k'a) U(k'a') n=oo
(k,a,w)= (A+2p,( +2 k,= F. (o) .Uz (k,a,w)6(x-nL), (32)"d z d x n = o

and

7:,x (k,,a, co) = p 'd + =Fx (co) ZUx(k,a,w))(x - nL). (33)
12n=-o

12



4. ANALYTICAL SOLUTION

The analytical solution is now calculated. This begins by transforming the right-hand side

of equations (32) and (33) so that the delta functions are absorbed into the displacement

functions. This transformation is derived and discussed elsewhere,14 and produces the following

equations

F/=n r/oo 2

F(CO) U,(ka, -L)FzU,,) (k +- a, w) (34)

n/=--oo L n=-0 L

and similarly

0)o Fx (0)O) n=,,o 2;rn
Fx((O) ZUx(ka,' 5(x-nL)- - E- UxZ(k + ,a, ow). (35)

I,'=--o0 n=--oo

Next the functional form of the displacements from equations (19) and (20) are inserted

into equations (30) through (35) and the following algebraic matrix equation is obtained

[A(O)(k)]{y(O)(k)}= E, [F(n)(k+2 )]{y(,n(k+ 2 )rn) ,+3~) p. (36)
L L

n=--ooL

where [A (0)(k)] is a four by four matrix that models the dynamics of the plate for n = 0,

{y( 0)(k)} is the four by one vector of wave propagation coefficients for n = 0,

[F(n) (k + 2zn / L)] is the four by four matrix that represents the periodic transducer loading on

the structure for nth mode, {y (n) (k + 2 zn / L) } is the four by one vector of wave propagation

coefficients for nth mode, and p is the four by one vector that models the plane wave excitation.

The entries of the matrices and vectors in equation (36) are listed in the appendix. To facilitate a

solution to the problem, index shifting is employed. The integer shift property of an infinite

summation is applied to equation (36), which, because of the summation from minus infinity to

positive infinity, results in

13



[A(m)(k + 2gm)] {y(,m)(k + 2gm
L L

n=oc ( ) 2z(n+m))]{y(n+m)(k 2z(n+m))1+ P m=O
- [F~ Lnm(k+ + m) (37)

n-oL L 0m#0

=2f [F(m)(k )]{y(m) (k 2-m p m=O
- L L 0 m#0.

where the 0-term is a four by one vector whose entries are zeros. Once the [A(m)] matrix is

integer-indexed and the transducer load matrix indexes have been shifted, the system equations
can be rewritten using all the n-indexed modes as

Ay = Fy + P, (38)

where A is a block-diagonal matrix and is equal to

[A(-') (k - -) 0 0
L

A = 0 [A(°)(k)] 0 , (39)
2ff

0[A(')(k 0z-)
L

F is a rank deficient, block-partitioned matrix and is written as

[F_ )(k-2ff 0)() [F~')(k ± 2ffA
L L

F= [.[(-)(k--IT) [F( 0 )(k)] [F(')(k+-)] 2, (40)
L L

[F(-1) (k 2-- [V(°)(kll [F(')(k+ 2ffA
L L

14



P is the planewave load vector

p[ 0 T pT 0 T .. ', (41)

and y is the wave propagation coefficient vector that contains all the unknown indexed
coefficients as

y {y(-I)(k-ff))T .y(O)(k)IT + 2 7))T ... , (42)

where the unknown wave propagation coefficients are contained in the equations as

{y(°)(k)}={A(k,a) B(k,w) C(k,w) D(k, CO)}T

_{A(O) B(0 ) C(0 ) D(O)}T

The 0-term in equation (39) is a four by four matrix whose entries are all zeros and the 0-term in

equation (41) is a four by one vector whose entries are all zeros. Equation (38) is assembled, and

the wave-propagation coefficients that reside in the y vector are found by

y =[A-F]-1P. (44)

When the coefficients are determined, the displacements of the system can be calculated using

equations (19) and (20) and the n = 0 wave propagation coefficients.

15 (16 blank)



5. MODEL VALIDATION

The sonar window - Tonpilz transducer interaction model - can be compared and

validated for a thin plate at low frequencies using a Bernoulli-Euler model that has been

previously developed.' 4,"5 , 6 The stiffeners in these models are replaced by Tonpilz transducer

dynamics so that the validation example corresponds to the thick plate model developed in

sections 2 through 4. The thin plate model has one degree of freedom that is the displacement in
the z-direction. This equation is written as

[ ý F W) F (CO)) 'ý,o 2z
I + F(o)T(k, wo) F- (w) n To k +--, w)

Uz (k, w) L L L=- 1
2T(kw) (45)P°1 ( °))1 F z (wo) ' =' o 2 zrn ,

1- Z Y T(k+ ,w)I[ L LJ
n,.=---O0

where

T(k, co) =1(46)

Dk -phw2 +( f-

and

D 2-' (47)
12(1-_v2)

where E is Young's modulus (N/m 2) and v is Poisson's ratio (dimensionless). Once the normal

displacement is known, the transducer output is determined using equation (29).

Figure 3 is a plot of the transfer function of transducer voltage divided by input pressure

versus wavenumber at a frequency of 100 Hz. This extremely low frequency was chosen
because it is a value at which the two models should theoretically agree. Additionally, the

comparison is made versus wavenumber rather than arrival angle so that the higher wavenumber

dynamics are included in the comparison. This example was generated with the following

system parameters: window thickness h is 0.005 m, window density p is 1200 kg/m3 , Lamd

constant 2 is 9.31x10 8 N/m 2, Lam6 constant ui is 1.03x108 N/m 2, fluid density pf is 1000 kg/m 3,

17



fluid compressional wavespeed cf is 1500 m/s, transducer head mass MH is 2.5 kg/m,

transducer tail mass MT is 10.0 kg/m, transducer stiffness Ks is I X 106 N/m 2, transducer

separation distance L is 0.1 m, transducer face width w is 0.095 m, transducer stack height / is

0.01 m, and transducer constant g33 is 0.025 (volts m)/N. In figure 3, the solid line is the elastic

plate theory developed in sections 2 through 4 and corresponds to equations (16) through (44);

and the x symbols are the Bernoulli-Euler plate theory and correspond to equations (45) through

(47). The elastic plate model was calculated using eleven modes (-5 < n < 5) that produced a

20-by 20-element system matrix while the thin plate model was calculated using 51 modes

(-25 < n < 25). Note that there is agreement between the two models over the entire

wavenumber region.
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6. A NUMERICAL EXAMPLE

A numerical example to illustrate the dynamics of a sonar window interacting with the
Tonpilz transducer array is now presented. To understand fully the model results, it is necessary

at this point to slightly digress. The features present in the Tonpilz transducer output are best
understood if the dispersion curve for the system is studied. The dispersion curve is found by
setting

det [A - F] = 0, (48)

and this determines the location in the wavenumber-frequency plane where free wave

propagation can exist. Each of these free waves is related to a specific dynamic motion of the

system. Figure 4 is the dispersion curve for an example with the following system parameters:

window thickness h is 0.1 m, window density p is 1200 kg/m3, Lam6 constant A is 1.43x 109

N/m2 , Lam6 constant ,u is 3.57x 108 N/m 2, fluid density p f is 1000 kg/m 3, fluid compressional

wavespeed c j is 1500 m/s, transducer head mass MH is 1 kg/m, transducer tail mass MT is

4 kg/m, transducer stiffness KS is 1 x 107 N/m 2, transducer separation distance L is 0.1 m,

transducer face width w is 0.095 m, transducer stack height t is 0.01 m, and transducer constant

g33 is 0.025 (volts m)/N. The noticeable feature from figure 4 is that the system is very rich with

free wave propagation above 2490 Hz. This frequency value corresponds to the first

antisymmetric Lamb wave of the system. Without the mass-loading, this would occur at

f = EL = 2730 Hz; (49)
2h

however, because the transducers mass-load the plate, this location is shifted downward in

frequency. It is noted that the multiple free waves correspond to higher order plate waves,

fluid/structure interaction waves, and the first set of periodic waves, i.e., n = ±1. These periodic
waves are related to the spacing of the individual transducers and occur in wavenumber at

integer multiples of

2,r
k = 271 (50)

L
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These periodic waves are frequently called Floquet17 and/or Bloch17,18 waves. An

additional note to the dispersion curve is included. Although equation (48) may predict a
specific free wave, it may not necessarily propagate in the structure. (An acoustic load may not

excite a specific free wave, or the excitation may result in an extremely small response.) The
propagation of a wave is dependent on the interaction of the structural load with the physics of
the free wave.

Figure 5 is a color image of the transfer function of transducer voltage divided by input

pressure versus arrival angle and frequency for the example problem. The scale is shown next to
the image as a colorbar and corresponds to dB referenced to volts/!PPa. The response of the
system shown in figure 5 is extremely complex, however, most of the features that are present

are nulls. To understand the relationship of these nulls with respect to the free wave propagation,
the dispersion curve is plotted over the transfer function in figure 6. The color map scale in
figure 6 is the same as that of figure 5. Nulls frequently exist between branches of the dispersion
curve that have split or separated. This separation is due to the fluid loading on the plate. Figure
7 is four cuts of figure 5 at 1500, 2610, 4030, and 7320 Hz, respectively, and is shown to
illustrate the magnitude (solid line) and phase angle (dashed line) differential versus arrival angle

at various frequencies. The last three frequencies are shown to illustrate the nulling effects (or
system zero dynamics) that are present at higher frequencies.

Finally, the system response can be beamformed using

N
B(k, co) = R VS(k, o9) exp[i(k - ks)xn], (51)

n=1

where N is the number of sensors in the array, k, is the steered wavenumber (radim), and x, is
the location of the nth sensor (in). For the following analysis, a 16-sensor (element) array is used.
The beam patterns are displayed as polar plots, with the solid lines in the plots corresponding to
array response based on the theory developed previously (equations (1) through (44)), and the

dashed lines are the response of the array to unity input at all wavenumbers. Each short dashed
concentric half circle represents 10 dB of energy. Because these beam patterns are being
displayed as polar plots, the wavenumbers in equation (51) have been converted into arrival
angles. Figure 8 is a plot of the beamformed response at 1500 Hz with a steer angle of 00.
Figure 9 is a plot of the beamformed response at 1500 Hz with a steer angle of 300. It is noted
that in these cases, the sonar window improves the response of the beamformer. This is primarily

due to the receive energy drop off at large arrival angles. Figure 10 is a plot of the beamformed
response at 2610 Hz with a steer angle of 0'. Again, the sonar window dynamics have improved

the beam pattern. Figure 11 is the beamformed response at 2610 Hz with a steer angle of 45.10,

an angle that corresponds to a null in the system response. Steering the array response into this
null location has significantly degraded the response of the beamformer. Figure 12 is a plot of the
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beamformed response at 4030 Hz with a steer angle of 0'. In this case, the sonar window slightly
degrades the beamformer response. Figure 13 is a plot of the beamformed response at 4030 Hz
with a steer angle of 12.50. Steering into the null does not seriously degrade the beamformer
response. Figure 14 is a plot of the beamformed response at 7320 Hz with a steer angle of 0'.
The sonar window significantly improves the sidelobe response of the array at this frequency and
steer angle. Figure 15 is a plot of the beamformed response at 7320 Hz with a steer angle of 9.8'.
In this case, the beam pattern has been mildly degraded.
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7. CONCLUSIONS

The dynamics of a fully elastic sonar window interacting with an array of single resonant
Tonpilz transducers have been analytically modeled. This model shows the effects of acoustic
energy insonifying the array at all frequencies, rather than at a single frequency. This is useful as
sonar systems are built or modified for broadband processing. The model predicts where the
acoustic cone is smooth for optimum sonar processing and where the effects of null responses
will enter into the processing. The effect of the sonar window on the beam pattern has been
demonstrated.
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APPENDIX
MATRIX AND VECTOR ENTRIES

The entries of the matrixes and vectors in equation (44) are listed below. Without loss of

generality, the top of the plate is defined as z = b = 0. For the [A (n)(k + 27n /L)] matrix, the
nonzero entries are

a 2 -a2A - 2a2, - Ak2 -+ w , (A-l)

rn

an2f
a12 = -a 2A- 2a2,pu- )k 2 ,no2 (A-2)

Yn

kna 2 pf

a13 =-2,knfln + (A-3)
Yn

a14 = 2lknfn- + knw 2 , (A-4)
Yn

a 21 =-2tkncan , (A-5)

a 22 = 2Pknan , (A-6)

2 _ 2a23 = PGfl2 k2) (A-7)

2 2a 24 = P(,(32 -k2), (A-8)

a31 = (-an2 - 2a2 p - 2ka) , (A-9)

a 32 = (-,t2A- 2a 2 p - Ak2)exp(-iana) (A- 10)

A-1



a33 = -2pkn/Jn exp(ifna) , (A- 1i)

a34 = 2,uknfin exp(-iflna) , (A-12)

a41 = -2.knan exp(iana) , (A-13)

a42 = 2puknca exp(-iaoa) , (A-14)

a43 = Pu(f2 - k2 )exp(i/?na) , (A-15)

and

2 2
a 4 4 = k fl2 - ) exp(-i/Jna) (A-16)

where

kn =k+-2 , (A-17)
L

ain =nk 2 -k 2 , (A-18)

k22

and

y,= w/f -kn = kf -kfl (A-20)

For the [F(n) (k + 2n nIL)] matrix, the nonzero entries are

f31 F (CO) (iarn )exp(iarna) ,(A-21 )

L

A-2



f32 = Fz (W) (-ian)exp(-iana) , (A-22)
L

f33 = Fz (w) (ikn)exp(iflna) , (A-23)

L

f34 = Fz (w) (ikn)exp(-i/na) , (A-24)

L

f41 - Fx (w) (ikn)exp(iana) , (A-25)
L

f42 - Fx (wo) (ikn)exp(-iana) , (A-26)
L

f43 - Fx (w) (_illn)exp(ifna) , (A-27)

L

and

f44 - Fx (C) (ifin)exp(_ijgna) (A-28)

L

The y vector entries are

y={... A(-') B(-1) C(-') D(-1) A(O) B(0) T.(-9
C(O) D(o) A(') B(1) C(1) D(1)..}.(-9

The p vector entries are

p={-2P1 (O) 0 0 0 }T. (A-30)

A-3 (A-4 blank)
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